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We consider a viscous drop, loaded with an insoluble surfactant, spreading over a flat
plane that is covered initially with a thin liquid film. Lubrication theory allows the
flow to be modelled using coupled nonlinear evolution equations for the film thickness
and surfactant concentration. Exploiting high-resolution numerical simulations, we
describe the multi-region asymptotic structure of the spatially one-dimensional
spreading flow and derive a simplified ODE model that captures its dominant
features at large times. The model includes a version of Tanner’s law accounting for
a Marangoni flux through the drop’s effective contact line, the magnitude of which
is influenced by a rarefaction wave in the film ahead of the contact line. Focusing
on the neighbourhood of the contact line, we then examine the stability of small-
amplitude disturbances with spanwise variation, using long-wavelength asymptotics
and numerical simulations to describe the growth-rate/wavenumber relationship. In
addition to revealing physical mechanisms and new scaling properties, our analysis
shows how initial conditions and transient dynamics have a long-lived influence on
late-time flow structures, spreading rates and contact-line stability.

1. Introduction
Surfactants are chemicals that adsorb at interfaces to change the local surface

tension. They are exploited in many areas of technology to control the wetting
properties of liquids on solid surfaces. Common applications include detergency,
crop-spraying, coating processes, microfluidics and oil recovery. Whether their
presence is desired or not, surface-active materials pervade most areas of interfacial
fluid mechanics. Their importance is reflected by a significant increase since the
early 1990s in the number of papers in the Journal of Fluid Mechanics concerned
with surfactant-mediated flows. The mammalian lung has motivated much recent
research in this area (Grotberg 1994, 2001; Gaver, Halpern & Jensen 2005). Natural
lung surfactant, a complex mixture of phospholipids and proteins, performs many
important physiological roles including maintenance of the mechanical stability
and compliance of liquid-lined airways and alveoli. Its fundamental biomechanical
significance is illustrated by evidence that the development of lung surfactant was a
prerequisite for evolution of the vertebrate lung and of air-breathing (Daniels 2001).
In modern times, surfactant replacement therapy has become a standard life-saving
treatment for premature infants who are born with an immature surfactant system.
Motivated in part by this application, we address here a long-standing and challenging
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problem in thin-film fluid mechanics: the spreading and stability of a surfactant-laden
drop on a surface coated with an initially uniform (and surfactant-free) liquid film.

To set this problem in context, it is useful first to recall some key features of
drop spreading under spatially uniform surface tension. This is a problem that has
attracted enormous attention because of the difficulty of modelling a moving contact
line, namely that imposing the no-slip condition at a moving solid/liquid/vapour
contact line leads to a non-integrable stress singularity. Numerous regularizations of
this singularity have been proposed: a small amount of slip or a precursor film are
commonly introduced in order to yield a well-posed problem (e.g. Oron, Davis &
Bankoff 1997). The relationship between the speed of the contact line (expressed as
a capillary number Ca) and the drop’s dynamic contact angle, often called ‘Tanner’s
law’ (also credited to Hoffman and Voinov), then includes a logarithmic dependence
on the ratio of some inner lengthscale (a slip length, or a precursor film thickness)
to the drop radius. While Tanner’s law is therefore only weakly dependent on the
regularization used, the presence of a logarithm also indicates that there is not the
strong separation of lengthscales that facilitates an accurate asymptotic approximation
(King 2001). While the contact line of a drop spreading under the effects of surface
tension alone is generally stable, when spreading is externally forced (for example by
gravity, centrifugal forces, or shear stresses), a bulge is created behind the contact line
that can become unstable to a fingering instability with a well-defined wavelength
(e.g. Bertozzi & Brenner 1997).

In the presence of surfactant, the macroscopic behaviour of a spreading drop
becomes much more sensitive to the delicate physical processes operating near the
contact line. Here it helps to distinguish between cases in which there is a precursor
film ahead of the drop (such as an aqueous film that adsorbs on a hydrophilic
substrate in a humid environment) and those in which the surface ahead of the
drop is dry (e.g. a hydrophobic substrate in a low-humidity environment) (Frank &
Garoff 1995). In the former case (exemplified by a surfactant that is electrostatically
repelled from the solid substrate), spreading is often accompanied by a dramatic
dendritic fingering instability (illustrated in figure 1), the origins of which we consider
below; this instability is of a character quite distinct from the spatially regular
fingering of a driven contact line mentioned above. In the latter case (exemplified by
a surfactant that adsorbs strongly onto the substrate), spreading can have a stick–slip
character; for example, the surfactant may diffuse ahead of the drop and adsorb
onto the solid/vapour interface (e.g. Starov, Kosvintsev & Velarde 2000) giving rise
to ‘autophobing’ behaviour (in which the surfactant drop will not advance over its
own monolayer), resulting in transient drop retraction.

For drops spreading in the absence of a precursor film, the rolling motion of the
flow near an advancing contact line causes surfactant at the liquid/vapour interface
to accumulate at the contact line (assuming the affinity of the surfactant for the
solid is not too high). Marangoni flows (driven by gradients of surface tension) can
then immobilize the interface locally. While spreading on hydrophobic substrates
is therefore generally slow, ‘superspreading’ surfactants (the best known examples
of which are trisiloxane surfactants) can spread relatively rapidly over hydrophobic
substrates by exploiting Marangoni flow. Two important factors are implicated in
generating this flow: the presence of surfactant aggregates in the bulk (e.g. a dispersed
phase of vesicles; Stoebe et al. 1997) and the presence of a precursor film in a humid
atmosphere (Zhu et al. 1994). Churaev et al. (2001) have shown how these two effects
may interact, with repulsion between vesicles providing an effective disjoining pressure
that prevents severe thinning of the precursor film immediately ahead of the drop
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Figure 1. Experimental images of surfactant spreading in plan (left) and side (right) views,
at early (top) and later (bottom) times. The fingers at the edge of the bulk drop are spreading
over an ultra-thin film; this film thickens abruptly across the dark (and slightly irregular) rim
(left). Reprinted with permission from Afsar-Siddiqui, Luckham & Matar (2003b). Copyright
(2003) American Chemical Society.

that would otherwise hinder spreading. The origins of superspreading remain an area
of active debate.

In contrast to the extensive literature on the spreading of uncontaminated drops on
non-wetting surfaces, relatively few authors have examined the effects of a surfactant
in such situations theoretically. Assuming that the surfactant is insoluble and its
transport is convection-dominated, Cox (1986) determined the quasi-steady flow in
a wedge-shaped region intermediate between the ‘outer’ bulk drop and the ‘inner’
zone at the contact line where microscopic physical mechanisms (such as slip) are
required to regularize the stress singularity. Since slip reduces to zero the speed of the
interface at the contact line (Ramé 2001), Cox (1986) therefore had to assume zero
surfactant transfer through the contact line, requiring the interface to be immobile.
He derived a modification of Tanner’s law valid in the limit Ca log(ε) = O(1), where
ε � 1 is the ratio of the slip length to the drop radius. The modified law is applicable
to a large range of contact angles and shows a variety of exotic properties, including
non-existence of solutions for certain parameter values, with interesting consequences
for contact-line stability. Similarly, Chesters & Elyousfi (1998) showed that surfactant
increases the dynamic contact angle for a given Ca and permits multiple solutions. In
contrast, Joanny (1989) allowed for transport through the contact line (either allowing
surfactant to adsorb onto the solid surface or to escape into a precursor film) and
derived a version of Tanner’s law including a parameterized Marangoni term, valid
for small contact angles.

Ramé (2001) extended Cox’s quasi-steady analysis to allow for surfactant transport
through the contact line, showing how diffusion into the bulk in the ‘inner’ region
(when slip is present) may provide such a flux. Allowing for Marangoni flow along the
drop interface in Cox’s ‘intermediate’ region, assuming a large static contact angle and
a fixed surfactant flux through the contact line, Ramé showed how the relationships
between dynamic contact angle and contact line speed can be multivalued (providing
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Figure 2. A sketch of a droplet spreading on a thin film, showing film thickness h and
surfactant concentration Γ as functions of distance x from the drop centre. Dashed lines
demarcate asymptotic regions: the bulk drop (I), the ultra-thin film (II), the spreading
monolayer (III), the drop’s effective contact line (A), the rarefaction wave (B) and the kinematic
shock (C).

a possible mechanism for contact-angle hysteresis) and undefined at large speeds.
An alternative approach was taken by Clay & Miksis (2004), who examined drop
spreading using a specified relation between contact angle and contact-line speed,
prescribing the rate of surfactant transfer through the contact line and the dependence
of equilibrium contact angle on surfactant concentration; using a model based
on lubrication theory, they showed how surfactant slows spreading by interfacial
immobilization unless transfer through the contact line is significant. Likewise, Chan &
Borhan (2005) (using a similar class of model but employing a nonlinear surface
equation of state) showed how droplet spreading rates can be increased by surfactant
under suitable conditions.

Surfactant transport through the contact line is an inescapable feature of
surfactant-laden drops spreading on a precursor film. Numerous authors have shown
experimentally how such spreading gives rise to a dendritic fingering instability at the
edge of the drop (e.g. Marmur & Lelah 1981; Troian, Wu & Safran 1989; Zhu et al.
1994; He & Ketterson 1995; Cachile et al. 2002; Afsar-Siddiqui, Luckham & Matar
2003a, b; see figure 1); for a detailed review see Asfar-Siddiqui et al. (2003c). The
following sequence of events is believed to give rise to this behaviour. After initial
deposition of the drop, a large surface-tension difference exists between the edge of
the drop and the precursor film. This is relieved by viscous dissipation in a Marangoni
flow of the precursor film, in which a surfactant monolayer (possibly accompanied
by surfactant dissolved in the liquid) spreads rapidly over the film. Strong stretching
of the film’s interface causes film thickening at the leading edge of the monolayer
and thinning at the monolayer’s upstream end, just ahead of the drop’s contact
line (an example is sketched in figure 2). The drop therefore has to spread over an
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extremely thin, surfactant-loaded liquid layer. In doing so the advancing contact line
can develop striking fingering patterns.

Theoretical models of this instability have been developed within the framework
of lubrication theory. Troian, Herbolzheimer & Safran (1990) described some of the
key features of the overall flow, including a kinematic shock at the leading edge of
the insoluble monolayer (previously identified by Borgas & Grotberg 1988), and they
proposed a physical mechanism giving rise to fingering in qualitative terms. Roughly
speaking, a forward perturbation of the contact line compresses the monolayer in
the ultra-thin film immediately ahead of the drop, increasing the surfactant gradient
locally; the enhanced Marangoni flow pulls the contact line forward, amplifying the
disturbance. Because the drop behind the contact line is relatively deep, perturbations
in surfactant concentration equilibrate quickly, suppressing effects that might restrain
the growth of the instability. Identifying an ‘adverse mobility gradient’ (in film depth),
Troian et al. (1990) suggested an analogy with viscous fingering in a Hele-Shaw cell
(or in porous media) in which a more mobile (less viscous) fluid displaces a less
mobile one (Homsy 1987). However they were unable to demonstrate this analogy
rigorously.

Following this study there was a sustained effort to provide a more quantitative
description of the instability. Jensen & Grotberg (1992) showed how an insoluble
surfactant monolayer spreading on an initially planar film can be described using a
variety of similarity solutions (see also Jensen 1994), so that in a planar geometry
a localized monolayer increases in length like t1/3 at time t . This algebraically
simple solution was an attractive starting point for further analysis. A series of
studies examining the stability of this solution to time-dependent perturbations with
spanwise variation (Matar & Troian 1997, 1998, 1999a; Fischer & Troian 2003a)
showed that disturbances may exhibit transient algebraic growth, but none showed
sustained exponential growth. Sustained growth was however recently reported for
disturbances to a t1/2 similarity solution associated with continual supply from a
source of surfactant (Fischer & Troian 2003b), for which severe film thinning near the
source leads to a bottleneck in surfactant transport, although the connection between
the t1/2 similarity solution and drop spreading was not established. A sustained
instability was also generated by introducing van der Waals effects, so that film
rupture acts as a secondary instability following primary thinning of the film (Matar &
Troian 1999b). However since fingering is promoted by spreading on hydrophilic
rather than hydrophobic surfaces, and by surfactants that are repelled rather than
attracted to the interface (Frank & Garoff 1995), the physical origins of this instability
are not consistent with those giving rise to dendritic fingering.

More recently, Warner, Craster & Matar (2004a) examined the stability of a bulk
surfactant-laden drop, from which a monolayer spreads over a thin precursor film,
describing the flow using two coupled nonlinear evolution equations for the film
thickness and insoluble surfactant concentration (see (2.1) below). In the absence of
perturbations, their spatially one-dimensional simulations revealed a structure broadly
similar to that described by Troian et al. (1990), with severe film thinning immediately
ahead of the bulk drop (as illustrated in figure 1). This constriction inhibits the flux
of surfactant out of the drop to such an extent that the t1/3 (rather than the t1/2)
similarity solution describes the monolayer flow ahead of the drop. Two types of linear
stability analysis of this spatially non-uniform and time-dependent basic state were
then undertaken, one examining the growth of perturbations measured by a suitable
norm, the other examining the growth of perturbations to a ‘frozen’ basic state. Both
convincingly revealed sustained growth of disturbances concentrated around the edge
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of the drop. Computations of the fully nonlinear problem, which are challenging
because of the diverse lengthscales that arise, then revealed fingering patterns that
resemble those seen experimentally.

In this paper, we revisit the spatially one-dimensional spreading of a surfactant-
laden drop treated by Warner et al. (2004a), using asymptotic approximations to
obtain a second-order ODE model for the coupled spreading of the drop and
monolayer. This includes a modification of Tanner’s law which links the dynamics
of the drop’s advancing contact line to the Marangoni flow in the ultra-thin film
ahead of it. In contrast to previous studies where surfactant transport appears as
a prescribed parameter (e.g. Joanny 1989; Ramé 2001; Clay & Miksis 2004), here
this flux is determined dynamically. We also identify a new shock structure that may
arise (a rarefaction wave) connecting the ultra-thin film to the spreading monolayer,
and we highlight the long-lived local influence of the initial conditions. We then
examine the stability of the advancing contact line of the drop. Assuming it advances
slowly enough that we may treat the base state (described by the familiar Landau–
Levich equation) as quasi-steady, a linear stability analysis reveals exponential growth
rates for disturbances as a function of spanwise wavenumber. We describe this
relationship in the limit of small wavenumber asymptotically and finite-wavenumber
effects numerically. This enables us to clarify the proposed analogy with Hele-Shaw
fingering and to identify new scaling properties of the instability.

2. The model
We consider the spreading of a drop of surfactant-laden liquid on a flat plane that is

prewetted with a thin layer of the same liquid, uncontaminated by surfactant. Initially
the drop has maximum height H� and width H�/ε (for some ε � 1); the precursor
layer has thickness δH� (for some δ � 1) and uniform surface tension σ �. The
liquid has constant viscosity µ� and the spreading motion is assumed slow enough
that inertial effects may be neglected. Insoluble surfactant is present on the drop
initially at concentration Γ �, lowering the surface tension of the drop to σ � − S� (S�

being the drop’s spreading coefficient). The surfactant is assumed sufficiently dilute
that S� � σ �, so that the equation of state relating surface tension to surfactant
concentration may be assumed linear (with slope −S�/Γ �). The surfactant diffuses
on the interface with diffusivity D� (a weak effect included here only to regularize
numerical solutions). To keep the model as simple as possible we neglect numerous
effects that may be significant in experiment (electrostatic forces, gravity, evaporation,
van der Waals forces, surface viscosity, etc.). For a detailed survey of such effects in
this context see Afsar-Siddiqui et al. (2003c).

Lubrication theory can be used to derive evolution equations governing the
spreading of the drop over the film (Gaver & Grotberg 1990; Jensen & Grotberg
1992; Warner et al. 2004a). Scaling the film height on H�, distance along the plane
on H�/ε, time on µ�H�/ε2S�, and surfactant concentration on Γ �, the equations are

ht = ∇ ·
(

1
2
h2∇Γ + 1

3
h3∇p

)
, p = −C∇2h, (2.1a)

Γt = ∇ ·
(
hΓ ∇Γ + 1

2
h2Γ ∇p

)
+ D∇2Γ, (2.1b)

where h(x, y, t) is the film thickness, p(x, y, t) the film pressure and Γ (x, y, t)
the surfactant concentration. Transport is driven by surface tension gradients
(represented by terms proportional to ∇Γ ), capillary pressure gradients and surface
diffusion. We work in the domain x � 0, 0 � y � 2π/k for some fixed k, and
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impose the boundary conditions hx = hxxx = 0 and Γx = 0 at x = 0, h → δ and
Γ → 0 as x → ∞ and periodicity in y. Following Warner et al. (2004a), the initial
conditions are h(x, y, 0) = δ+(1−δ −x2)H (1−x), Γ (x, y, 0) =H (1−x) where H (x) ≡
1
2
(1 + tanh(Kx)).
The problem is parameterized by δ, the dimensionless precursor film thickness,

K , controlling the shape of the initial condition, C = ε2σ �/S�, a surface tension
parameter and D = µ�D�/S�H�, a dimensionless diffusivity. In what follows we assume
that δ = 10−2, K =100, C =10−3 and D = 10−7. Assuming ε = 10−2, this value of C

corresponds to S�/σ � = 0.1, allowing us to neglect variations in surface tension in the
capillary terms; for an analysis of such effects see Krechetnikov & Homsy (2004).

In § 3 we use a finite difference method to compute y-independent solutions of (2.1)
satisfying

ht + Qx = 0, Q ≡ − 1
2
h2Γx + 1

3
Ch3hxxx, (2.2a)

Γt + qx = 0, q ≡ −hΓ Γx + 1
2
Ch2Γ hxxx − DΓx, (2.2b)

where Q and q are fluid and surfactant fluxes. Our numerical scheme employed
a fixed but spatially non-uniform grid, with grid points clustered in regions where
we anticipated rapid spatial variation. We used implicit timestepping and validated
convergence using grid refinement. For the simulations shown, the grid spacing varied
from 10−4 where the film was extremely thin (regions A, II and B in figure 2) to
0.005 elsewhere. We used the same parameters as Warner et al. (2004a) but a finer
computational grid; while the overall features of the flow are as they reported, we
resolve some important details not described previously.

3. Drop spreading: numerical results
Figure 3(a, b) shows numerical simulations of (2.2) at late times, when the solution

exhibits the structure sketched in figure 2. Figure 3(c–f ) shows the evolution of
some key variables which characterize the spreading process: x1 (the location of the
pressure minimum closest to x = 0, representing the location of the drop’s effective
contact line); x2 (where the curvature in h changes at the downstream end of the
ultra-thin film, representing the location of the rarefaction wave); x3 (the leading edge
of the monolayer, satisfying Γ (x3, t) = 10−4); h0 = h(0, t) (the maximum drop height)
and h1 =h(x1, t) (representative of the thickness of the ultra-thin film ahead of the
contact line); surfactant concentrations Γ0 =Γ (0, t) and Γ2 =Γ (x2, t); and surfactant
gradients k1 = − Γx(x1, t) and k2 = − Γx(x2, t). Figure 3(a, d) illustrates the dramatic
variations in film thickness between the bulk drop (where h0 = O(1), not shown in
figure 3a), the precursor film thickness (where h = δ = 0.01) and the thickness of the
ultra-thin film ahead of the contact line (where h1 falls to around 10−4). For later
reference, we also show the relationships between some of the characteristic variables
(figure 3g–i).

As might be anticipated, much of the spreading is locally self-similar. We illustrate
this by replotting in figure 4 the data shown in figure 3(a, b) when rescaled with
suitable variables (using scalings justified in § 4 below). The data are shown to
collapse in the bulk drop region (figure 4a, b, labelled I in figure 2), the contact-line
region (figure 4c, d , A in figure 2), the rarefaction wave at the downstream edge of
the ultra-thin film (figure 4e, f , B in figure 2) and the spreading monolayer region
(figure 4g, h, III in figure 2). We now examine these self-similar structures in more
detail.
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4. Drop spreading: asymptotic approximation
For the flow arising from the initial conditions used in our simulation, we postulate

a long-time asymptotic structure consisting of six non-trivial regions, three long (I–
III) and three short (A–C) (see figure 2), from which we derive an approximate ODE
model ((4.17) below) describing the evolution of the system. We now discuss each
region in turn, neglecting hereafter the effects of surface diffusion.

(i) Region I. In 0 � x <x1(t) the drop is quasi-static and parabolic and the
surfactant distribution is almost uniform (figure 4a, b). We therefore write Γ = Γ0 +
Γ̂ (x, t), taking |Γ̂ | � Γ0. To leading order in Γ̂ /Γ0, (2.2) becomes

ht =
(

1
2
h2Γ̂x − 1

3
Ch3hxxx

)
x
, 0 =

(
hΓ̂x − 1

2
Ch2hxxx

)
x
. (4.1a, b)

Integrating (4.1b), applying no flux at x = 0, gives hΓ̂x = 1
2
Ch2hxxx , and so (4.1a)

becomes ht + 1
12

(h3hxxx)x = 0, the evolution equation for a drop spreading under

an immobile interface. This has the leading-order solution h = h0[1 − (x2/x2
1 )] in

0 � x <x1 (as in figure 4a). Because there is negligible volume flux through the
drop’s effective contact line, the drop volume V = 2

3
h0x1 remains almost constant

during the motion. The effective contact angle at the edge of the bulk droplet is
θ = − hx(x1−, t) = 2h0/x1 = 3V/x2

1 .
(ii) Region A. A thin transition region at x = x1(t) connects the bulk droplet to

the ultra-thin film (in region II) of thickness O(h1) � h0. This contact-line region
is controlled by competing capillary and Marangoni forces. Balancing convective
and capillary fluxes in (2.2a), x1thx ∼ C(h3hxxx)x (where ∼ denotes ‘scales like’) implies
θ ∼ (x1t /C)1/3. Balancing convective and Marangoni fluxes x1thx ∼ (h2Γx)x implies
x1t ∼ h1k1. This gives a lengthscale for region A of h1/θ ∼ (Ch2

1/k1)
1/3 � x1. We assume

that changes in Γ across region A, of size (k2
1Ch2

1)
1/3, are small compared to Γ0. We

then set

x = x1 +
(
Ch2

1

/
k1

)1/3
ξ, h = h1H (ξ ), Γ = Γ0 +

(
k2

1Ch2
1

)1/3
G(ξ ), x1t = h1k1V̂ .

(4.2)

Figure 4(c, d) shows how the PDE data collapse when scaled using these variables
(for clarity we used Γ1 = Γ (x1, t) ≈ Γ0 in figure 4d). Assuming ξ , H , G and V̂ are all
O(1), (2.2) reduces at leading order to

−V̂ Hξ +
(
− 1

2
H 2Gξ + 1

3
H 3Hξξξ

)
ξ

= 0,
(
−HGξ + 1

2
H 2Hξξξ

)
ξ

= 0. (4.3)

Integrating, applying the boundary conditions H → H ∞, Gξ → G∞
ξ as ξ → ∞, and

imposing the conditions H = 1 and Gξ = − 1 where Hξξξ =0 (at ξ = 0, by definition
of x1), we find that H ∞ = 1, G∞

ξ = −1 and

V̂ (1 − H ) + 1
3
H 3Hξξξ = 1

2
(1 + H 2Gξ ),

1
2
H 2Hξξξ = 1 + HGξ. (4.4)

Eliminating HGξ gives

1
12

H 3Hξξξ =
(
V̂ − 1

2

)
(H − 1), Gξ = (6V̂ − 4)/H − (6V̂ − 3)/H 2. (4.5a, b)

We recognise (4.5a) as the Landau–Levich equation. The volume flux has three
components: the motion of the wall (relative to this moving frame), dragging liquid
into the drop; the capillary pressure gradient; and the Marangoni flux pulling liquid
out of the drop. Figure 3(g) shows that 1

2
< V̂ < 2

3
at large times, implying that

the advancing contact line accumulates liquid more rapidly than the Marangoni
flow draws liquid out of the drop; for such V̂ , (4.5a) has a unique solution for
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which Hξξ → 0 as ξ → −∞ and Gξ < 0 across region A. This solution is shown in

figure 4(c, d) for V̂ = 0.51; it matches the PDE data closely. (The constant arising
from integrating (4.5b) was chosen such that G(0) = 0.) The outer limit of the solution
of (4.5a) may be written

H 3 = 3(12V̂ − 6)ξ 3[φ0 − log(−ξ )] (ξ → −∞) (4.6)

for some constant φ0. We may write the log term as log[(x1 − x)/x1] + log[x1/

(Ch2
1/k1)

1/3], so that in the overlap between regions I and A, where (Ch2
1/k1)

1/3 �
x1 − x � x1, the latter contribution is dominant. Matching to region I, we can write
the local slope θ as

θ3 = (12/C)
(
x1t − 1

2
h1k1

)
L where L ≡ log

(
k1x

3
1/Ch2

1

)
	 1. (4.7)

Troian et al. (1990), Joanny (1989) and Ramé (2001) obtained expressions equivalent
to (4.7) (a modification of Tanner’s law), although only Ramé included a logarithmic
factor.

(iii) Region III. Figure 4(g, h) shows that the spreading monolayer in x2 < x < x3

exhibits the self-similar structure identified in Jensen & Grotberg (1992). Assuming
h = H (ς ), Γ = x−1

3 G(ς ) where x = ςx3, (2.2) becomes, with error O(1/x3),

x2
3x3t ςHς + 1

2
(H 2Gς )ς = 0, x2

3x3t (ςG)ς + (HGGς )ς = 0. (4.8)

Numerical results (figure 3c) support the assumption that x2
3x3t =O(1). By imposing

H = 2δ and G =0 at ς = 1, we obtain H = 2δς , G =(x2
3x3t /2δ)(1 − ς ). In the original

variables, h = 2δx/x3, Γ = (x3t /2δ) (x3 − x) in x2 <x <x3, consistent with figure 4(g, h).
We now define (h±

2 , k
±
2 ) as lim(h, −Γx) as x → x2± from within regions III and II

respectively, distinguishing them from the numerically determined quantities (h2, k2).
Then to leading order, as x → x2+, writing the surface velocity at x2 as US

2 ,

h+
2 = 2δx2/x3, Γ2 = k+

2 (x3 − x2), k+
2 = x3t /2δ, US

2 = −hΓx = x3t x2/x3. (4.9a–d)

(iv) Region C. The structure of the kinematic shock near x = x3 has been described
in detail previously (Jensen & Grotberg 1992; Jensen & Halpern 1998; Jensen 1998).
(This region is referred to as a ‘convection front’ by some authors.) In the parameter
regime relevant here, the discontinuity in film thickness is smoothed by capillary
effects and the jump in surfactant gradient is smoothed by surface diffusion, but
the region remains dynamically passive. The shock speed is characteristic. Ahead of
region C the film is undisturbed.

(v) Region B. Near x = x2, between the ultra-thin film (region II) and the
spreading monolayer, is an abrupt jump in film height and surfactant concentration
(figure 4e, f ), which we now show is smoothed via a rarefaction wave over
a lengthscale long enough for capillary and diffusive effects to be negligible at
leading order. To ensure continuity of surfactant flux across the region we impose
h+

2 k+
2 =h−

2 k−
2 , which using (4.9) implies k−

2 = x2x3t /(h
−
2 x3). Continuity of volume flux

in (2.2a) is ensured by the Rankine–Hugoniot condition x2t =
1
2
h+

2 k+
2 = 1

2
x2x3t /x3. The

validity of this assumption is tested in figure 3(h), which shows that x2t x3/x3t x2 remains
close to 0.5 over many decades of time; the agreement is not perfect but is reasonable
considering that x2 is defined (numerically) somewhat arbitrarily (it is difficult to
pinpoint the precise location of an expanding structure). We then write x = x2 + ζ ,
Γ (x, t) =Γ2(t) + Γ̃ (ζ, t) (assuming |Γ̃ | � Γ2), with Γ2 given by (4.9a). Substitution in
(2.2b) gives to leading order (hΓ̃ ζ )ζ = Γ2t /Γ2. Integrating and imposing hΓ̃ ζ = −US

2
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at ζ = 0 (see (4.9d)) gives

hΓ̃ ζ = (Γ2t /Γ2)ζ − US
2 . (4.10)

Substituting (4.10) into (2.2a), noting that x2t =
1
2
US

2 , gives

ht − 1
2
(Γ2t /Γ2)ζhζ = 1

2
hΓ2t /Γ2. (4.11)

Solving (4.11) using characteristics gives h(ζ, t) =h0(ζ0)
√

Γ2(t)/Γ
0
2 on ζ (t) =

ζ0

√
Γ 0

2 /Γ2(t) for some ‘initial’ condition h0(ζ ) = h(ζ, t0), Γ 0
2 =Γ2(t0). (Our definition

of x2 requires h0
ζ ζ (0) = 0.) Thus in terms of the original variables,

h(x, t) = h0
(
(x − x2)

√
Γ2/Γ

0
2

)√
Γ2/Γ

0
2 , (4.12)

showing that the film is stretched and thinned by the local Marangoni flow; figure 4(e)
shows that h collapses under these scalings. Where regions B and III overlap, we
require h = 2δx/x3 from (4.9a). Thus at t = t0, h

0(ζ ) = (2δ/x0
3 )(x

0
2 +ζ ), where x2(t0) = x0

2

and x3(t0) = x0
3 ; subsequently

h(x, t) =
(
2δ/x0

3

) (
x0

2 + (x − x2)

√
Γ2/Γ

0
2

)√
Γ2/Γ

0
2 . (4.13)

To ensure that this matches to 2δx/x3 we require

x3

x0
3

=
Γ 0

2

Γ2

,
x2

x0
2

=

√
Γ 0

2 /Γ2, i.e.
2x2t

x2

=
x3t

x3

= −Γ2t

Γ2

, (4.14a–c)

consistent with the shock condition assumed above and figure 3(i), which shows that
(4.14c) is approximately satisfied at large times. Integrating (4.10) using (4.14) gives

Γ (x, t) = Γ2(t) +
Γ2t

Γ2

∫ x

x2

x

h
dx, (4.15)

which ensures matching with (4.9b). Figure 4(f ) shows that Γ collapses under the
scalings ζ ∼ 1/

√
Γ2, h ∼

√
Γ2 and Γ̃ ∼ Γ2t /Γ

5/2
2 consistent with (4.13) and (4.15). At the

trailing edge of the rarefaction wave (x <x2) we assume h0(ζ ) → H � 1 as ζ → −∞,

where H is determined by an earlier transient flow. Subsequently, h−
2 = H

√
Γ2/Γ

0
2

from (4.13), implying h−
2 = Hx0

2/x2.
(vi) Region II. In x1 <x <x2 the film is ultra-thin and the Marangoni volume

flux (proportional to h2) is consequently very small, although the surfactant flux is
significant. Two approaches may be taken to describe this region. First, one may set
h(x, t) =H (υ)/x2, Γ (x, t) = Γ2 + 2x2

2x2tG(υ) where υ = x/x2, assuming that at large
times x2

2x2t � Γ2 (a condition that is asymptotic since, according to figure 3(c, e),
x2

2x2t ∼ t−1/2 and Γ2 ∼ t−1/3 as t → ∞). Then to leading order (2.2) becomes 0 = (υH +
H 2Gυ)υ , (HGυ)υ = −1. Integrating, and using the matching condition HGυ → −1 as
υ → 1−, we deduce HGυ = − υ for (x1/x2) <υ < 1, implying a linear surface velocity
across region II. Both the fluid and surfactant transport equations are then satisfied
to leading order, implying that the film distribution H (υ) throughout region II is
determined by the initial conditions. Strong stretching of the interface leads to severe
film thinning and the flow here has a hyperbolic character. Since h(x2−, t) = Hx0

2/x2,
we require H = H 0(υ) for some H 0 where H 0(1) = Hx0

2 ; G can then be determined by
integration using G(1) = 0. If, for example, H (υ) = Hx0

2/υ , then h = Hx0
2/x, implying

that the film’s shape is effectively frozen in region II while the contact line advances
over it.

Unfortunately, over the timescales accessible to computation the assumption Γ2 	
x2

2x2t is not well-satisfied (the changes in Γ across region II remain appreciable, see
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for example figure 4h) and a second approach using an approximate solution proves
more useful. Since the volume flux in region II is very small, we assume the film
takes the frozen distribution described above, so that h1 = Hx0

2/x1 for some H. We
then assume that the surfactant concentration is large enough for the surfactant
distribution to reach steady state across this region so that the surfactant flux is
uniform (in practice there is approximately up to 20 % variation over the times
shown in figure 3). Thus h1Γ0k1 =h−

2 Γ2k
−
2 = −(Hx0

2/x)Γ Γx, from which we find that

Γ 2 = Γ 2
2 + Γ2k

−
2

(
x2

2 − x2
)/

x2, (4.16)

implying Γ 2
0 = Γ 2

2 + Γ2k
−
2 (x2

2 − x2
1 )/x2.

(vii) ODE model. We now evaluate the total mass of surfactant in the monolayer,

M =

∫ ∞

0

Γ dx = Γ0x1 +

∫ x2

x1

Γ dx + 1
4
x3t (x3 − x2)

2/δ, (4.17a)

where Γ in the integral satisfies (4.16). This provides an evolution equation for x3.
With the evolution equation for x1 provided by (4.7), which we may write as

x1t =
[
9V3C/4Lx6

1

]
+ 1

2
h1k1, (4.17b)

we now have a closed system since, using expressions derived above for h1, x2, Γ2, h−
2 ,

k−
2 and Γ0, all the variables may be described in terms of x1(t), x3(t), parameters V,

M, C and δ and integration constants x0
1 , x0

2 , x0
3 , Γ 0

2 and H.
The PDE simulations used M = 1, V = 2

3
. Fitting x0

1 , x0
2 , x0

3 and Γ 0
2 to PDE data at

t0 = 104, and setting H = 3×10−4, (4.17) provides a good approximation for behaviour
in t > 104 (figure 3c, d). The long-lived influence of the initial conditions and sub-
sequent transient flows in region II prohibits a uniformly asymptotic approximation,
and limits the accuracy of predictions of h1(t), but nevertheless illustrates a critically
important feature of the spreading dynamics. Once x1 � x2 � x3, further simplifica-
tion is possible: the majority of the surfactant is contained in region III, so that (from
(4.17a)) M ≈ x2

3x3t /(4δ), implying x3 ∝ t1/3, x2 ∝ t1/6 and Γ2 ∝ t−1/3 (from (4.14)); a
balance of terms in (4.17) suggests x1 ∝ t1/7 (with at least a logarithmic correction)
and volume conservation in region I then implies h0 ∝ t−1/7. These scalings are all
borne out by PDE solutions in figure 3(c–f ). Our crude approximation for region II
suggests h1 = Hx0

2/x1 ∝ t−1/7, although the PDE data are closer to t−1/6 (figure 3d),
again reflecting our imperfect knowledge of the local effect of transient dynamics.

5. Stability to transverse perturbations
Having captured to a reasonable level of accuracy the structure and dynamics of

the spatially one-dimensional flow, we now investigate its stability to small-amplitude
disturbances. Linear stability analysis of the entire time-dependent flow (Warner et al.
2004a) showed that growing disturbances are initially confined to the neighbourhood
of the drop’s contact line. We therefore focus on region A, perturbing the quasi-
steady Landau–Levich solution satisfying (4.5), looking for disturbances with spanwise
wavenumber k. By treating the basic state as quasi-steady during the evolution of dis-
turbances, its weak algebraic time-dependence is captured parametrically through V̂ .

The scaling (4.2) with t = (C/k4
1h1)

1/3τ , y =(Ch2
1/k1)

1/3η reduces (2.1) in region A
(neglecting surface diffusion) to

Hτ − V̂ Hξ =
[

1
2
H 2Gξ − 1

3
H 3(∇2H )ξ

]
ξ
+

[
1
2
H 2Gη − 1

3
H 3(∇2H )η

]
η
, (5.1a)

0 =
[
HGξ − 1

2
H 2(∇2H )ξ

]
ξ
+

[
HGη − 1

2
H 2(∇2H )η

]
η
. (5.1b)
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Figure 5. (a, b) Solutions of (5.2) for κ = 0.3 and V̂ = 0.52; arrows show increasing

times between 1 and 200. (c) Large-time growth rate Σ versus wavenumber κ for V̂ =

0.52, 0.53, . . . , 0.59 (the arrow shows V̂ increasing).

Setting (H, G) = (Hs, Gs) + β(Ĥ , Ĝ)eiκη and κ =(Ch2
1/k1)

1/3k, we recover at leading
order in β � 1 the steady solution (4.3) (now denoted with a subscript s). The linear-
ized unsteady disturbances satisfy

Ĥ τ − V̂ Ĥ ξ =
[

1
2
H 2

s Ĝξ + HsGsξ Ĥ − 1
3
H 3

s

(
∂2

ξ − κ2
)
Ĥ ξ − H 2

s Hsξξξ Ĥ
]
ξ

− 1
2
κ2H 2

s Ĝ + 1
3
κ2H 3

s

(
∂2

ξ − κ2
)
Ĥ , (5.2a)

0 =
[
HsĜξ + Gsξ Ĥ − 1

2
H 2

s

(
∂2

ξ − κ2
)
Ĥ ξ − HsHsξξξ Ĥ

]
ξ

− κ2HsĜ + 1
2
κ2H 2

s

(
∂2

ξ − κ2
)
Ĥ . (5.2b)

We solved (5.2) numerically by timestepping, using a uniform finite-difference grid
on a domain −50 � ξ � 50, tracking the evolution of localized disturbances (initially
Ĥ = Ĝ = 0.001 exp(−10ξ 2)). The evolution depends on the prescribed wavenumber κ

and the contact-line speed (parameterized by V̂ ). Figure 5(a, b) shows how, under
suitable conditions, disturbances can grow rapidly: perturbations to Ĥ are larger
behind the contact line (in ξ < 0), while perturbations to Ĝ are larger ahead of
it (ξ > 0), features identified previously by Warner et al. (2004a). At large times
(for t � 103) the growth is approximately exponential (with Ĥ , Ĝ ∝ expΣτ ). The
computed growth rate Σ is shown in figure 5(c) as a function of κ for fixed values
of V̂ ; the shape of the dispersion relation resembles that obtained by Warner
et al. (2004a) using their quasi-steady-state approximation. For small κ , growing
disturbances ultimately reached the left-hand boundary of the domain (where the
base state is non-uniform); growth rates were then sensitive to the size of the domain
chosen. This prevented us from computing reliable solutions for κ < 0.1. However,
the simulations demonstrate convincingly that, at least for V̂ just above 0.5, the
most unstable mode has wavenumber comparable to the width of region A, that
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increases in the parameter V̂ (representing the ratio of the advective to Marangoni
fluxes through the contact line) that can occur during spreading (see figure 3g) have
a stabilizing effect, and that sufficiently short-wavelength disturbances are stable.

Further insight may be gained by analysing the eigenmode associated with the
translation invariance of the basic state, which forms part of the discrete spectrum
of the linear operator in (5.2). As shown in the Appendix, for κ � 1 this mode has
growth rate

Σ = κ[2 − 3V̂ + O(1/Ls)] + o(κ), (5.3)

where Ls is as defined by L in (4.7). Despite being only logarithmically accurate,
this approximation corroborates our observation that disturbances grow more slowly
as the contact-line speed increases, and the predicted cutoff at which Σ/κ becomes
negative as κ → 0 + (namely V̂ = 2

3
+ O(1/Ls)) is consistent with figure 5(c), at

least to within the limited accuracy of the asymptotic and numerical approaches. To
improve the accuracy of both techniques in this regime requires fuller consideration
of the dynamics in the bulk droplet and a more thorough analysis of the spectra of
(5.2). However, the long-wave asymptotic analysis in the Appendix clearly reveals a
physical mechanism leading to the fingering instability (that differs somewhat from
the qualitative scenario proposed by Warner et al. 2004a). A foward perturbation of
the contact line compresses the monolayer in region II and increases the surfactant
gradient ahead of the drop (without altering the film height, consistent with figure 5(a);
see (A 3)) but reduces the contact angle of the drop (without generating stabilizing
capillary pressure gradients to leading order; likewise Marangoni effects are weak
because the monolayer can equilibrate where the film is thick, consistent with
figure 5(b), see (A 5)). The two effects compete to displace the contact line further
through (4.7), with the elevated Marangoni flux winning, particularly at low contact-
line speeds, hence generating an instability.

6. Discussion
We have used simulation and asymptotic analysis to describe the late-time spreading

dynamics of a two-dimensional surfactant-laden drop over a precursor film. Our
results give insights into some important physical mechanisms that were not accessible
from previous computational studies. An over-riding feature of this problem, in terms
of predicting spreading rates and subsequent instabilities, and distinguishing it from
classical drop-spreading problems, is the long-lived influence of the initial conditions.
In particular, we have shown how the structure of the ultra-thin film immediately
ahead of the drop’s effective contact line (region II in figure 2; see also figure 4e, f )
depends explicitly on earlier transient flows. In constructing our ODE model of planar
spreading, this required us to make ad hoc estimates of the film thickness h1 and
surfactant gradient k1 immediately ahead of the contact line (§ 4), and also to take
starting values of other parameters from PDE simulations. Thereafter, however, our
model (4.17) provided a good approximation of the late-time spreading dynamics (see
figure 3c, d). We showed how, for the particular initial conditions chosen, a rarefaction
wave arises across which the film thickness jumps dramatically (region B in figure 2;
see also figure 1). This structure is reminiscent of various shock-like structures leading
to severe film thinning in thermally driven thin-film flows (e.g. Bertozzi, Münch &
Shearer 1999; Münch 2003), although the coupling of the surfactant distribution to
the flow adds extra complexity to the present problem and prevents direct analogies
from being drawn. A particularly striking demonstration of the importance of initial
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conditions comes from further simulations (not shown) in which we assumed both
the initial surfactant distribution and the film thickness to be parabolic (rather
than taking Γ to be uniform across the drop). In this case, a wholly different flow
structure arises, with regions II and B absent and the drop’s contact line (region A)
connecting directly to the spreading monolayer in region III. Warner et al. (2004a)
demonstrated how changing other parameters, such as the precursor film thickness,
can have similarly striking effects on the long-time dynamics. These observations
raise challenging mathematical questions concerning the conditions necessary for the
formation of a rarefaction wave and the associated ultra-thin film, and also emphasize
the importance in experimental studies of using well-characterized and reproducible
initial conditions.

Fundamental to both the drop’s spreading rate and subsequent instabilities is
the relationship between contact angle and contact-line speed. It is instructive to
re-express the analogue we derived of Tanner’s law (4.7) in unscaled, dimensional
terms

θ�3 = 12
(
Ca − 1

2
h�

1

/
X�

)
log

(
x�3

1 /h�2
1 X�

)
, (6.1)

where Ca = µ�x�
1t�/σ

� is the capillary number associated with the moving contact line
and X� = σ �/(dσ �/dx�) can be interpreted as the lengthscale over which the surface
tension varies ahead of the contact line. The logarithmic factor in (6.1) includes
the ratio of the drop width x�

1(t
�) to (h�2

1 X�)1/3, the width of region A (where h�
1 is

the dimensional thickness of the film immediately ahead of the contact line). As
explained above, X� and h�

1 have complex dependence both on the initial conditions
and on the governing parameters of the problem, making direct comparison with
experiment difficult. However, our model (4.17) illustrates the connection between the
dynamics of the drop and that of the monolayer, and identification of relationships
such as (6.1) should facilitate further extensions of the present model to account
for experimentally significant effects such as an axisymmetric geometry, surfactant
solubility (see Warner, Craster & Matar 2004b), intermolecular forces, and so on.

Warner et al. (2004a), who examined the stability of the entire flow numerically,
showed how growing disturbances of the spreading drop are confined to the
neighbourhood of the advancing contact line. Here we have identified a substantially
simpler problem which captures much of the dominant dynamics, by restricting
attention to perturbations confined to region A in figure 2. By perturbing a solution
of the Landau–Levich equation (4.5), we showed (figure 5) that the most rapidly
growing linearized disturbances have a wavelength comparable to (h�2

1 X�)1/3, the width
of region A, and that the growth rate is dependent on the relative speed of the contact
line (represented by Ca in (6.1)) and the speed at which Marangoni fluxes pull liquid
out through the contact line (represented by the ratio h�

1/2X�), so that faster contact
line speeds (or weaker Marangoni fluxes) are stabilizing (provided Ca >h�

1/2X�).
Furthermore, we identified (in the Appendix) the singular structure in the long-
wavelength limit of the discrete mode associated with the translation invariance of
the base state, which illustrates explicitly a mechanism leading to instability. (It is
notable that while (5.2) is satisfied by the translation mode to O(κ2), the boundary
condition (6.1) is perturbed at O(κ).) Perturbations generate long-range disturbances
in the monolayer concentration ahead of the contact line, and in the film thickness
behind it, which lead to the growth of disturbances at a rate given approximately by
(5.3), which in dimensional terms becomes Σ� ≈ (σ �k�/µ�)(2h�

1/X� − 3Ca), where k�

is the spanwise wavenumber. Going to the following order, the dispersion relation
for this mode may well be of the form Σ ≈ aκ − bκ3 for constants a and b,
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which supports the proposed analogy with viscous fingering in porous media or a
Hele-Shaw cell (Troian et al. 1990). However, the analogy is imperfect. For example,
since Ca is comparable to (h�

1/X�) (see (6.1)), the wavelength of disturbances scales
with h�

1Ca−1/3, whereas for viscous fingering problems the wavelength typically scales
like Ca−1/2 (Homsy 1987). Our simulations also showed that growing long-wave
disturbances can extend into the bulk drop, indicating that the bounded eigenmodes
associated with the discrete spectrum of (5.2) fail to capture the full dynamics. A
more detailed analysis, examining transient growth and the nature of the continuous
spectrum, is warranted. The relationship between the present instability and finger
formation in a meniscus advancing over a precursor film in a Hele-Shaw cell (Chan &
Liang 1997) also deserves further investigation.

Finally, it is striking how the complex competition between Marangoni and capillary
forces leads to an order-of-magnitude difference between the rate of spreading of the
surfactant and the bulk droplet (compare x1 and x3 in figure 3c). This places limitations
on the use of surfactant as a vehicle for enhanced delivery of a solute (for example a
drug in an inhaled aerosol droplet), because the solute would be largely confined to
the bulk droplet by severe film thinning at the drop’s contact line. This effect can be
reduced by lowering initial surfactant gradients as much as possible.

This work was supported in part by Wellcome Trust grant 061142 and EPSRC
JREI Scheme GR/R08292/01.

Appendix. The long-wavelength limit of the translation mode
We examine instabilities with wavelength intermediate between the width of region

A and regions I and II and assume exponential time-dependence so that Ĥ τ in
(5.2a) becomes ΣĤ . When κ � 1 we assume that the eigenmode associated with the
translation invariance of the basic state has a three-region structure: an inner region,
in which ξ = O(1), in which the contact line is displaced sideways; and two outer
regions with lengthscales O(1/κ). We suppose that the drop’s effective contact line
(when viewed from the outer regions) lies along ξ = βE, so that in the inner region
the leading-order solution of (5.2) is Σ = 0, Ĥ = −Hsξ , Ĝ= −Gsξ . Thus to leading
order, at the outer limits of the inner region, we have

H ∼ −θ̂ s(ξ − βE) (ξ → −∞), G ∼ −(ξ − βE) (ξ → ∞), (A 1a, b)

where E ≡ exp(iκη + Στ ). We now show how the perturbation to G in (A 1b) affects
the surfactant gradient Ĝξ ahead of the contact line, and how the perturbation of H

in (A 1a) affects the contact angle behind the contact line.
To describe the outer regions we rescale with ξ = z/κ , Ĝ= Ḡ/κ , Σ = κΣ̄

(anticipating Σ̄ = O(1)), so that (5.2) becomes

Σ̄Ĥ − V̂ Ĥ z =
[

1
2
H 2

s Ḡz + HsGsξ Ĥ − 1
3
κ3H 3

s

(
∂2

z − 1
)
Ĥ z − H 2

s Hsξξξ Ĥ
]
z

− 1
2
H 2

s Ḡ + 1
3
κ3H 3

s

(
∂2

z − 1
)
Ĥ , (A 2a)

0 =
[
HsḠz + Gsξ Ĥ − 1

2
H 2

s κ3
(
∂2

z − 1
)
Ĥ z − HsHsξξξ Ĥ

]
z

− HsḠ + 1
2
κ3H 2

s

(
∂2

z − 1
)
Ĥ .

(A 2b)

Ahead of the contact line, where Hs ≈ 1 and Gsξ ≈ −1, we require Ĥ = o(1), Ḡ= o(z).

With error O(κ3), (A 2) becomes Σ̄Ĥ − V̂ Ĥ z = [1
2
Ḡz − Ĥ ]z − 1

2
Ḡ, 0= [Ḡz − Ĥ ]z − Ḡ,
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which reduces to Σ̄Ĥ = (V̂ − 1
2
)Ĥ z, Ḡzz − Ḡ= Ĥ z. Thus Ĥ = Ĥ 0 exp(Σ̄z/(V̂ − 1

2
))

for some Ĥ 0. For Σ̄ > 0 and V̂ > 1
2
, we require Ĥ 0 = 0 for perturbations to remain

bounded as z → ∞ (the contact line moves faster than any growing disturbances to
the ultra-thin film). Thus Ḡ = Ḡ0 exp(−z) for some Ĝ0. To match with (A 1a, b) we
take Ḡ0 = κ . Thus towards the contact line, as z → 0+, Ĥ =0 and

G ∼ −(ξ − βE) − κβEξ, (A 3)

showing that a forward perturbation of the contact line (βE > 0) increases the
concentration gradient downstream without changing the film thickness (confirming
an assumption made by Troian et al. 1990).

Behind the contact line, we recall from (4.5)–(4.7) that the quasi-steady basic state
satisfies H 2

s Hsξξξ ≈ 12(V̂ − 1
2
), HsGsξ ≈ 6V̂ −4 and Hs ≈ −θ̂ sξ , where θ̂ 3

s = (12V̂ −6)Ls

and Ls 	 1. This is the overlap between regions A and I, where Hs is locally linear
to leading order. To get a sensible balance of terms, we write Ĥ = θ̂ sH̃ , Ĝ = κθ̂2

s G̃

(concentration fluctuations can be smaller behind the contact line, where the film
is deeper, than ahead of it, where the film is thin, for Marangoni fluxes to balance
convective fluxes). Equation (A 2) reduces to

Σ̄H̃ + H̃ z(5V̂ − 2) = θ̂3
s

[
1
2
D2G̃ + 1

3
D3D0H̃

]
, (A 4a)

(H̃ /z)z(6V̂ − 2) = θ̂3
s

[
D1G̃ + 1

2
D2D0H̃

]
, (A 4b)

where Dn ≡ ∂zz
n∂z − zn for n = 0, 1, 2, . . . . A WKB analysis for z → −∞ reveals

the solution G̃= 0, H̃ ∝ ez (plus more rapidly decaying solutions of the form
H ∝ G ∝ z−1/2ez cos( 1

2

√
3 log z + C)). To leading order in θ̂−3

s = O(1/Ls) � 1, the

former mode satisfies (A 4) for z = O(1). To match with (A 1a) we require H̃ (0) = 1,
and so H̃ =ez. Thus with logarithmic accuracy

H ∼ −θ̂ s(ξ − βE) + κθ̂ sβEξ, (A 5)

showing that a forward perturbation of the contact line (βE > 0) leads to a reduction
in the contact angle of the drop upstream, without the generation of pressure gradients.

We now return to the inner region to obtain a solvability condition relating (A 3) to
(A 5). We write Ĥ = −Hsξ + κĤ 1, Ĝ = −Gsξ + κĜ1 and impose matching conditions

Ĥ 1 → 0 and Ĝ1ξ → −ξ as ξ → ∞, and Ĥ 1ξ → θ̂ s as ξ → −∞. With error O(κ2), (5.2)
becomes

−Σ̄Hsξ − V̂ Ĥ 1ξ =
[

1
2
H 2

s Ĝ1ξ + HsGsξ Ĥ 1 − 1
3
H 3

s Ĥ 1ξξξ − H 2
s Hsξξξ Ĥ 1

]
ξ
, (A 6a)

0 =
[
HsĜ1ξ + Gsξ Ĥ 1 − 1

2
H 2

s Ĥ 1ξξξ − HsHsξξξ Ĥ 1

]
ξ
. (A 6b)

We integrate and apply the downstream matching conditions (A 3) to give

Σ̄(1 − Hs) − V̂ Ĥ 1 = 1
2
H 2

s Ĝ1ξ + 1
2

+ HsGsξ Ĥ 1 − 1
3
H 3

s Ĥ 1ξξξ − H 2
s Hsξξξ Ĥ 1, (A 7a)

0 = HsĜ1ξ + 1 + Gsξ Ĥ 1 − 1
2
H 2

s Ĥ 1ξξξ − HsHsξξξ Ĥ 1. (A 7b)

For ξ → −∞, (A 7) becomes at leading order

−Σ̄Hs + (5V̂ − 2)Ĥ 1 = 1
2
H 2

s Ĝ1ξ − 1
3
H 3

s Ĥ 1ξξξ , (A 8a)

(6V̂ − 2)Ĥ 1 = H 2
s Ĝ1ξ + Hs − 1

2
H 3

s Ĥ 1ξξξ . (A 8b)

We eliminate Ĝ1ξ to obtain −Σ̄Hs + (2V̂ − 1)Ĥ 1 = − 1
2
Hs − 1

12
H 3

s Ĥ 1ξξξ . The match-

ing condition Ĥ 1 ∼ θ̂ sξ implies that locally Ĥ 1 ≈ −Hs , from which we deduce
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Σ̄ = 2 − 3V̂ + O(1/Ls) (and thus (5.3)), a result that can also be derived directly by
assuming that (4.7) applies across the inner region.
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